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EFFECT OF NONEQUILIBRIUM PHONONS ON
SUPERCONDUCTING STATES WITH TWO COEXISTING ENERGY GAPS

Andre-Marie Tremblay
Laboratory of Atomic and Solid State Physics

Cornell University, Ithaca, NY 14853

Gerd Schonl,

Institut fur Theorie der Kondensierten Materie
Universitat Karlsruhe, BRD

ABSTRACT

It is shown that under the influence of tunnel currents, super-
conductors may exhibit a "first order transition" to a state with
two coexisting energy gaps. An energy and number conserving approxi-
mation for the collision operator is used to explicitly take into
account in the theory the effect of nonequilibrium phonons. Quanti-
tative predictions for experiments are presented.

1. INTRODUCTION

We have now reached, mainly through the study of radiation
stimulated superconductivity and of inhomogeneous states, the stage
where many "nonequilibrium phases" (nonequilibrium collective ef-
fects) may appear in superconductors, immediately bringing to the
forefront the problems of stability of dissipative states which are
nowadays under intense investigationl in the field of nonequili-
brium statistical mechanics in general. Thanks to the work of
Eckern, Schmid, Schmutz and Schon 2 (ESSS) we have now a large num-
ber of cases where the stability of dissipative states has been
investigated, including some examples where detailed balancel is
violated.

Although the work of ESSS predicts many phenomena which can be
qualitatively checked with experiment, a quantitative comparison is
difficult, mainly because phonons were assumed to remain in equi-
librium, a condition which we know is violated in most experimental
situations.

3

In this paper, we return to one of the first examples (which
is now part of the more general picture of ESSS) where the ideas
of Schmid4 on the stability of nonequilibrium superconducting
states were applied. In ref. 5 (hereafter I) it was shown that in
superconducting tunnel junctions, two values of the energy gap
could simultaneously be a solution of the gap equation. The re- Ac
suits are in qualitative accord with the pioneering experimental 8 0
work of Dynes, Narayanamurti and Garno6 and of Gray and Willemsen7 . D2,oG4

This paper reports on how the theory of I is modified when ull2
nonequilibrium phonons are included in the simplest possible way. .7
This allows us to set limits on the domain of validity of the theory ,
of I and to make quantitative predictions in the regime where we
can show that nonequilibrium phonons only renormalize the tempera-
ture entering the Landau-Ginzburg equation. If these simple theo-
retical predictions can be checked quantitatively by experiments,
it will give strong support to the theoretically sound global /DIZ ; o
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picture emerging from the work of ESSS. However, if a quantitative
comparison with experiment is not successful, the theoretical cal-
culation of at least the effect of nonequilibrium phonons will need
to be improved. 2. MICROSCOPIC THEORY

For convenience, we first summarize the results already obtained
in refs. 5 and 2. We consider a tunnel junction consisting of the
superconductor of interest (the probe) coupled to a second super-
conductor (the injector). We momentarily neglect the effect of non-
equilibrium phonons. We also assume that,

a) the probe is thin enough that we may assume a uniform injection
over the thickness of the junction;
b) the gap of the injector Ai, in contrast to the gap of the probe,
is not appreciably perturbed by the tunneling process. This can be
achieved by using an injector which is much thicker than the probe.
Qualitatively, our results should also apply to a more symmetrical
case7 but since it is hard experimentally to make the injector and
the probe identical, we prefer to study the case where they are
markedly different;
c) we restrict ourselves to temperatures T close to the transition
temperature Tc (Landau-Ginzburg region), (A,Ai << T).

The equations describing such a system have been derived many
times. The gap equation is,

(a - 6A2 -x - 2(1)

where E2 is the usual Landau Ginzburg coherence length, a-(T -T)/T
B=7C(3)/8r2T2 and the "gap control" (or anomalous term, or control
function) X is defined by,

x =  dE - N1 (E)6n(E) (2)

where 6n(E) is the angular average (isotropic part) of the energy
dependent deviation of the distribution function from its local
equilibrium value. Nl(E) B 0(JEJ-A)JEJ/(E'-A ) is the BCS density
of states and n(E) obeys a Boltzmann equation.2 The collision
operator Iep can be written down in the relaxation time approxima-

tion, Iep[ 6n(E)] - TE1 WE) where -E can be taken as a constant T0

equal to its value at E - 0 and T - Tc because E and A are small
with respect to T. To order (A/T)2 the scattering-in term can be
neglected. Finally, the term representing the effect of tunnel in-
jection can be derived using, for example, golden rule arguments.
Since only the part of 6n(E) which is odd in energy contributes to
X in Eq. (2), we can write,

-)D . 2B Ni (E- ev ) [nT(E-eV) - nT(E)] + (eV ",-eV)} (3)

B S (8e2RfN(O))
- 1

where R is the resistance of the junction, n the (effective) volume
of the probe, N(O) the normal density of states and Ni the injec-
tor BCS density of states.
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It was shown by ESSS that the most stable states in this situ-
ation were homogeneous so that the analysis of I applies under more
general conditions. The global stability of the various homogeneous
stationary states can be determined from the following potential
(generalized free energy) which can be obttined from the stationary
solutions of the Fokker-Planck equation 29 obeyed by our system,

3 A
F - -2N(O)Jd3r JdA'[_oA,2 + X(As')]'. (4)

Since such a potential function (generalized free energy) exists,
our system obeys the principle of detailed balance1 and its be-
havior will be analogous to systems in thermodynamic equilibrium;
in particular it will exhibit a first order phase transition when
two minima of F correspond to the same value of the generalized
free energy density

8.
To proceed any further, we need an explicit expression for X,

the gap control. The Boltzmann equation for the distribution func-
tion in the stationary homogeneous situation reduces to 6n(E) =

il To ( )D  The quantity X is computed using this equation and Eqs.(2),

0 E D Teqatt scmue sigti qainadEs()eV
(). The first order expansion in -- of Eq. (3) is plotted in
Fig. 1, This graph of 6n(l)(E) is useful to understand the results
given in analytical form in I.

8nOE)

Fig. 1: The first order
contribution 6n() (E) to
the quasiparticle dis-
tribution function descri-
bing an excess number of

.0 -excitations (particle-
like for E > 0 or hole-
like for E < 0) as a

function of energy.

_______224i

Consider the solid line in Fig. 1 for the case leVi -- Ai + A.
We can qualitatively understand why two solutions of the gap equa-
tion may simultaneously be possible, as follows. Suppose that
A - A is a self-consistent solution of the gap Eq. (1). Then the
peak In 6n(E) at 1.1A will be convoluted with the peak in NI(E) at
A - Ai and will give a large negative contribution to X in Eq. (2).
It is thus plausible that there also exists a solution with A>.lA
since in such a case the peak in 6n(E) at 1.1A would not contribute
to X and a more positive X is consistent with a larger gap (see
Eq. (1)).



The effects of heating on 6n(E) will in most instances intro-
duce a large but smooth background. If spikes similar to those de-
picted in Fig. 1 show up on this background then clearly the above
qualitative picture of why there may exist two gap solutions will
remain valid. On the other hand gap enhancement depends very much
on the level of the background.

The effect of nonequilibrium phonons becomes important when
the phenomenological "escape" time Tes becomes much longer than the
phonon scattering time ph, i.e., when Tes " Tph where Tph can be
expressed as a function of To using the ratio of the normal elec-
tron and longitudinal phonon specific heats CeI , Cp

h respectvely9

N*NT h/-o = 3% (3)c h(412C I)

Using the energy and number conserving approximation method ofEckern and Schbn 9 we find that the effect of nonequilibrium phonons
can be represented as simple heating when

1 < es/ p h << (T/)(T/eV). (5)

In such a case, the parameter a becomes a'I0

a' = a + 6ah = a-2.59BT (eV/2T)2 ( es/ph (6)

Note that 6a does not have any sharp step. By contrast,x computed
with 6n(1)(E has a step 5. It is basically this step which leads
to multiple solutions of the gap equation.

3. SIMPLE PREDICTIONS FOR EXPERIMENTS
3.1 Qualitative Aspects

We quote a few qualitative features of the theory, some of
which have already been experimentally observed, some of which will
hopefully be checked in future experiments.

a) The phase transition aspects of our theory have already been
noted5'2 and seem to agree with experimental findings6 ,7 : at a
certain voltage (see also Sec. 3.2), a low gap region (large in-
jection current density) appears in the probe and grows relative to
the larger gap region (low injection current density) as the total
injection current increases. The expected hysteresis has also been
observed6'7 . This transition in the junctions is analogous to a
liquid gas transition at constant pressure where the relative volumes
are controlled by the total volume. The total injection current
which controls the transition has no analogue in any of the other
nonequilibrium first order phase transitions studied by ESSS.
b) There is no threshold current, conductance or quasiparticle den-
sity in our theory. The two coexisting gaps can be in principle ob-
served at the threshold voltage in many kinds of junctions, even at
very low injection current density, as long as the energy differ-
ence between the two coexisting gaps (see following section) is
large enough to be resolved from relaxation time smearing effects
and other similar complications.
c) The Chi and Clarke gap enhancement (to be published) and the co-
existing gaps can be observed in principle in the same junction.



d) If heating effects are negligible, one of the two coexisting gaps
may be enhanced with respect to the equilibrium gap.
e) The coexistence of a superconducting and a normal phase is pos-
sible, as can be seen using either the graphical methods of I and
ESSS or an analytical method. Since this possibility is probably
harder to see experimentally, we shall not give any more quantita-
tive results on that matter.

Although the qualitative features described in paragraphs a)
and b) have already been observed, observation of the phenomena
described in paragraphs c), d), e) above would certainly give a
stronger experimental support to our theory.

3.2 Quantitative predictions

Assume that Eq. (5) holds. Then Eq. (6) also holds. In the
homogeneous case and when leVi is very close to A + Ai, one can find
a simple analytical form for Eq. (2). The transition voltage is
determined using the procedure outlined in Eq. (4).

This leads us to our first quantitative prediction,

leVol - Ai + l/2(As(s') + A t(a')). (7)

The transition voltage eV can be determined experimentally. It
should be related to the injector gap and to the experimentally de-
termined values of the two coexisting gaps A (a') and A (a') as des-
cribed in Eq. (7). Note that Eq. (7) and Eq! (8) that follows are
valid only when the condition

(-- 2T Tr a' << 1

is satisfied.
The temperature and conductance dependence of the two coexis-

ting gaps consitute our second quantitative prediction. If Ai is
roughly constant in the temperature range of interest and Ai >>
A (a') we have -1 -2AsR- R-

1( (TcT)3/4 (Tc-T) 7 4  (8)

The last term depends on the square of the conductance (R 2) and on
es and by assumption is smaller than the term proportional to the

conductance.

4. CONCLUSION

Five qualitative predictions were given in Sec. 3.1 and two
quantitative predictions in Sec. 3.2. Predictions concerning the
absolute values of the observed gaps can be derived but they are
less useful because they contain the parameter res/TPh which may
be harder to obtain experimentally Nevertheless, it is useful to
observe that our theory is not inconsistent with the fact that ex-
perimentally, the two coexisting gaps have values smaller than the
equilibrium gap. If, as was the case in the theory presented in I,
the condition s A (a)+Ai << A

2Tph 2T
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is realized, then the largest of the two coexisting gaps has a value
larger than the equilibrium value. In practice, the above condition
may not be satisfied.

It would be interesting to extend these ideas to low temperatures
where a solution of the deterministic equation also leads to the
possibility of a phase transition5 but where a determination of the
fluctuations, which we must know to determine the global stability,
is more complicated than close to Tc.

If the predictions presented in this paper are verified, we are
confident that our theory will also explain new experiments which
have just been done11 .

Finally, guided by the analogies between the generalized free
energy determining the stability of the nonequilibrium state and the
usual thermodynamic free energy, one can speculate that future ex-
periments may exhibit phenomena analogous to spinodal decomposition
in fluids12 . A rapid change of voltage in a junction is analogous to
a rapid change of pressure in the fluid. The current and junction
conductance are analogous respectively to the volume and temperature
of the fluid.
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Ambegaokar, and correspondence with K. E. Gray and B. Huberman. This
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